Stochastic Self-enrichment, Pre-enrichment, and the Formation of Globular Clusters
نویسندگان
چکیده
We develop a model for stochastic pre-enrichment and self-enrichment in globular clusters (GCs) during their formation process. GCs beginning their formation have an initial metallicity determined by the pre-enrichment of their surrounding protocloud, but can also undergo internal self-enrichment during formation. Stochastic variations in metallicity arise because of the finite numbers of supernova. We construct an analytic formulation of the combined effects of pre-enrichment and self-enrichment and use Monte Carlo models to verify that the model accurately encapsulates the mean metallicity and metallicity spread among real GCs. The predicted metallicity spread due to self-enrichment alone, a robust prediction of the model, is much smaller than the observed spread among real GCs. This result rules out self-enrichment as a significant contributor to the metal content in most GCs, leaving pre-enrichment as the viable alternative. Self-enrichment can, however, be important for clusters with masses well above 10 M⊙, which are massive enough to hold in a significant fraction of their SN ejecta even without any external pressure confinement. This transition point corresponds well to the mass at which a mass-metallicity relationship (“blue tilt”) appears in the metal-poor cluster sequence in many large galaxies. We therefore suggest that self-enrichment is the primary driver for the mass-metallicity relation. Other predictions from our model are that the cluster-to-cluster metallicity spread decreases amongst the highest mass clusters; and that the red GC sequence should also display a more modest mass-metallicity trend if it can be traced to similarly high mass. Subject headings: globular clusters: general — galaxies: abundances — galaxies: star clusters — galaxies: formation — galaxies: evolution — methods: analytical
منابع مشابه
The Multiplicity of Main Sequence Turnoffs in Globular Clusters
We present color-magnitude diagrams of globular clusters for models with self-enrichment and pre-enrichment. The models with self-enrichment turn out to have two or more main sequence turnoff points in the color-magnitude diagram if the fraction of mass lost by the globular cluster under supernova explosions does not exceed 95–97%. The models with pre-enrichment can have only one main sequence ...
متن کاملThe Self - Enrichment of Galactic Halo Globular Clusters The mass - metallicity relation
We discuss the existence of a mass-metallicity relation among galactic halo globular clusters. The lack of any luminosity-metallicity correlation in globular cluster systems has been used as an argument against self-enrichment models of cluster formation. We show that such a relation is statistically present among the galactic Old Halo globulars. This observational correlation implies that the ...
متن کاملThe Dynamical Implications of Multiple Stellar Formation Events in Galactic Globular Clusters
Various galactic globular clusters display abundance anomalies that affect the morphology of their colour-magnitude diagrams. In this paper we consider the possibility of helium enhancement in the anomalous horizontal branch of NGC 2808. We examine the dynamics of a self-enrichment scenario in which an initial generation of stars with a top-heavy initial mass function enriches the interstellar ...
متن کاملNumerical Simulations of Globular Cluster Formation
We examine various physical processes associated with the formation of globular clusters by using the three-dimensional Smoothed Particle Hydrodynamics (SPH) code. Our code includes radiative cooling of gases, star formation, energy feedback from stars including stellar winds and supernovae, and chemical enrichment by stars. We assume that, in the collapsing galaxy, isothermal cold clouds form ...
متن کاملSelf - enrichment in globular clusters . I . An analytic approach
By means of analytical calculations, we explore the self-enrichment scenario for Globular Cluster formation. According to this scenario, an initial burst of star formation occurs inside the core radius of the initial gaseous distribution. The outward-propagating shock wave sweeps up a shell in which gravitational instabilities may arise, leading to the formation of a second, metal-enriched, pop...
متن کامل